

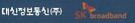
Volume 33, Number 1, KIIS

장소 제주대학교(언어교육원, 사회과학대학)

주최 (사) 한국지능시스템학회

주관 제주대학교

후 워



An Embedded Compact Transformer Vision System for Real-Time Health classification during Seedling Transplanting

eaith classification (Yu Zheng'

Kyeong-Hwan Lee^{1,2}

¹Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju

²Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju

Introduction

Necessity

Seedling transplanting is an important step in plant production to transplant seedlings into low-density trays at specific growth stage, Simultaneously, it is necessary to decide and select the growth status of seedlings in order to improve production quantity and quality.

Objective

Propose a compact Transformer-based vision system for real-time health classification of seedlings during the transplantation process. The algorithm is designed to be simple and compact, making it suitable for use on embedded devices with limited computational resources,

< Seedling transplanting>

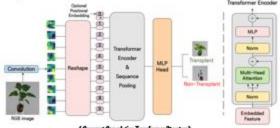
Seedling culture and data collection

< Seedling cultivation environment>

< Transplanting software interface >

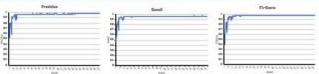
c Experimental profiles cultivation is

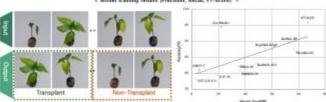
« Transplanting operation scenario »


Materials & Methods

Hardware system

< Hardware system configuration >


Compact Convolutional Transformer


(Compant Constitution Terrolismon Streetsm)

- Based on CNN-Transformer model is proposed, including two convolutional modules, seven Transformer modules, sequence pools and MLP outputs,
- The attention mechanism of transformer module and sequence pool is used to map the output to a single category index and assign data sequences according to weights, which improves the efficiency and accuracy of feature extraction.

Experiment and Results

< Model training results (Precision, Recall, F1-Score) >

- The dataset consists of 604 paprika image data divided into training, validation and test according to the ratio of 6:2:2,
- The training parameters: Batch size: 5, Learning Rate: 0,0005, Iteration: 200.
- The results were Accuracy: 94,5%, Recall: 97,1%, Precision: 94,9%, F1-score: 95,9%, and FPS: 7,6,

Conclusions

- Reduce model size 2-4 times compared to SOTA while maintaining accuracy.
- Select embedded device as the computing platform to reduce costs while increasing deployment flexibility.

References

- P. E. L. Otoya and S. R. P. Gardini, "A Machine Vision System based on RGB-D Image Analysis for the Artichoke Seedling Grading Automation According to Leaf Area," 2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE), Yunlin, Taiwan, 2021, pp. 176-181
- Fu, W.; Gao, J.; Zhao, C.; Jiang, K.; Zheng, W.; Tian, Y. Detection Method and Experimental Research of Leafy Vegetable Seedlings Transplanting Based on a Machine Vision, Agronomy 2022, 12, 2899

Acknowledgements

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry(IPET) and Korea Smart Farm R&D Foundation(KosFarm) through Smart Farm Innovation Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs(MAFRA) and Ministry of Science and ICT(MSIT), Rural Development Administration(RDA)(42103204) and by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry(IPET) through the Open Field Smart Agriculture Technology Short-term Advancement Program, funded by Ministry of Agriculture, Food and Rural Affairs(MAFRA)(32204003)