IEEE-NANO

2023
CONFERENCE
PROCEEDINGS

Welcome Message

Conference Information

Program at a Glance

Table of Contents

Author Index

http://2023.ieeenano.org

TulT10	Biyang
Nanomaterials 6 (Oral Session)	
Chair: Makasheva, Kremena	LAPLACE, CNRS, University of Toulouse
16:20-16:32	TulT10.1
A New Approach to the Formation of Carbon	Nanostructures and Conducting Polymers Composites, pp. 850-850.
Winkler, Krzysztof	University of Biallystok
Wysocka-Zolopa, Monika	University of Biallystok
Gradzka, Emilia	University of Biallystok
Goclon, Jakub	University of Biallystok
16:32-16:44	TulT10.2
Copper-Iron Based Bimetallic MOF Decorated	d Natural Diatoms for Controlled Release of Thiabendazole, pp. 851-852.
Hegde, Vinayak	Agricultural Automation Research Centre, Chonnam National University
P. Bhat, Mahesh	Agricultural Automation Research Centre, Chonnam National University
Lee, Jae Ho	Agricultural Automation Research Centre, Chonnam National University
Lee, Kyeong-Hwan	Agricultural Automation Research Centre, Chonnam National University
16:44-16:56	TulT10.3
Sub-Mm3 Dimensional Scaling of Additively 853-853.	Fabricated Microsupercapacitors for Embedded Energy Applications, pp.
Hodaei, Amin	EPFL
Subramanian, Vivek	Ecole Polytechnique Federale De Lausanne
16:56-17:08	TulT10.4
Electrical and Magnetic Properties of (Cr, Mn)2AIC Films, pp. 854-854.
boucher, richard	TU Dresden
leyens, christoph	TU Dresden

Copper-Iron Based Bimetallic MOF Decorated Natural Diatoms for Controlled Release of Thiabendazole

Vinayak Hegde¹, Mahesh P. Bhat¹, Jae Ho Lee¹, and Kyeong-Hwan Lee^{1,2,3}

¹ Agricultural Automation Research Centre, Chonnam National University, Gwangju 61186, South Korea

Abstract

The most essential aspect of the current world is to meet the demand and offer nutritious food to the enormously expanding population. However, crop disease and plant illness are significant problems that hinder plant development and lowers agricultural productivity. Thus, it is crucial to prevent/treat plant diseases and productively increase crop yield. The implementation of nanotechnology in the administration of active ingredients (AIs) offers an opportunity to improve the efficacy, environmental impact, and cost-effectiveness of AIs while also encouraging innovation and competition in the agricultural sector [1]. Such nanomaterials can be engineered to achieve a controlled and steady release of fungicides over a time period. Further, it is possible to enhance the stability and shelf-life of fungicides, allowing them to remain effective for a longer period. In this context, the current study investigated the release of thiabendazole employing lauric acid modified a hybrid composite nanomaterial comprised of natural low-cost diatoms and a copper-iron-based bimetallic MOF. Herein, the hybrid nanocomposite was developed by growing the bimetallic MOF over the surface of diatoms via the hydrothermal method followed by vacuum-assisted lauric acid capping. Lauric acid is temperature sensitive material, which readily degrades above 44 °C [2]. This feature leads to achieving the temperature-responsive AI release ability of nanocomposite. Such temperature-responsive formulations are beneficial in controlled environment agricultural systems where it could be possible to release the AIs by tuning the ambient temperature. In addition, the study demonstrates the in vitro release at different pH, temperature, and in vivo release studies using plants. Diatoms, being natural silica-based particles, possess a substantial number of active sites as well as specific characteristics such as porosity and surface area [3]. Bimetallic frameworks, on the other hand, feature greater stability, a synergistic effect, and a large surface area [4]. Thus, the combination of diatoms and bimetallic MOFs may provide the comprehensive physical-chemical characteristics required for thiabendazole administration. The developed formulation has shown a high fungicide loading capacity of 35%. The material has shown an interesting in vitro release profile of 65.45, 53.44, and 47.16% for pH 5, 7, and 9 respectively. The hybrid nanomaterial has also shown significant properties in preventing Botrytis cinerea fungus infections in plants. Further, nanoparticle uptake studies in plants are also systematically investigated to understand their translocation and distribution within the plant microenvironment.

ACKNOWLEDGMENTS

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through the Open Field Smart Agriculture Technology Short-term Advancement Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (32204003) and Korea Smart Farm R&D Foundation (KosFarm) through Smart Farm Innovation Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) and Ministry of Science and ICT (MSIT), Rural Development Administration (RDA) (42103204).

REFERENCES

- [1] D. Mittal, G. Kaur, P. Singh, K. Yadav, and S. Azmal Ali, "Nanoparticle-based sustainable agriculture and food science: Recent advances and future outlook," Frontiers in Nanotechnology, vol. 2, 2020, pp. 579954.
- [2] C. E. Tas, S. O. Gundogdu, and H. Unal, "Polydopamine-coated halloysite nanotubes for sunlight-triggered release of active substances," ACS Applied Nano Materials, vol. 5, 2022, pp. 5407-5415.
- [3] V. Hegde, U. T. Uthappa, S. S. Han, H.-Y. Jung, T. Altalhi, and M. D. Kurkuri, "Sustainable green functional nano aluminium fumarate-MOF decorated on 3D low-cost natural diatoms for the removal of Congo red dye and fabric whitening agent from wastewater: Batch & continuous adsorption process", *Materials Today Communications*, vol. 32, 2022, pp.103887.
- [4] J-Q. Liu, A. Kumar, D. Srivastava, Y. Pan, Z. Dai, W. Zhang, Y. Liu, Y. Qiu, and S. Liu, "Recent advances on bimetallic metal-organic frameworks (BMOFs): Syntheses, applications and challenges" *New Journal of Chemistry*, vol. 46, 2022, pp. 13818-13837.

² Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea

³ BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea

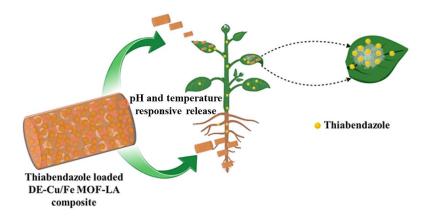


Figure 1. Schematic representation of thiabendazole release from bimetallic hybrid MOF nanocomposite for prevention of fungal disease in plant.