
2023년 추계학술대회 초록집

Vol.28. No.2

2023. 11. 2.(목) - 3.(금) 여수 히든베이 호텔

BAY 3	▶人마트팦	시人템	믺	신재생에너지	II
-------	-------	-----	---	--------	----

		■ 좌장 : 선우훈 교수 (순천대학교) ■
11:10~11:22	101	스마트 파밍 용어 표준화 전략과 지침 Strategy and Guideline for Development of Terminology Standards for Smart Farming 유정상(서울대학교), 김대현, 임종국, 강영선, 이중용*
11:22~11:34	102	수경재배 토마토 정밀 관비를 위한 생육 모니터링 기반 작물 물 요구량 추정 Estimation of Water Requirements based on Growth Monitoring of Tomatoes for Precision Hydroponic Solution Management in a Greenhouse 강민석(서울대학교), 김학진*, 이상현, 박성권, 조우재
11:34~11:46	103	순환신경망 모델 활용 온실 내부환경 최적 제어 방법 연구 Research on Optimal Control of Greenhouse Internal Environment Using a Recurrent Neural Network Model 오광철(강원대학교), 김석준, 박선용, 조라훈, 전영광, 이충건, 김대현*
11:46~11:58	104	온실 토마토 수경재배에서 정밀 관수를 위한 증발산 모니터링 Monitoring Tomato Evapotranspiration for Precision Supply of Hydroponic Solution in a Greenhouse 박성권(서울대학교), 강민석, 이상현, 조우재, 김학진*
11:58~13:00		BAY 1 - Break Time
13:00~13:12	105	표면탄화를 적용한 임목부산물 발열량변화 예측 모델 개발 및 검증 Development and Validation of Forest Byproducts Calorific value change Prediction Model using Surface Torrefaction 김석준(강원대학교), 박선용, 조라훈, 전영광, 오광철, 남서연, 김대현*
13:12~13:24	106	휴대용 이온 분석기를 이용한 양액 내 Ca 이온 선택성 전극 성능 및 수명 평가 Performance Evaluation of a Laboratory-made Ca Ion-Selective Electrode for Precision Hydroponic Solution Management Measurement 이상현(서울대학교), 김학진*, 강민석, 박성권, 박찬민
13:24~13:36	107	Development of Silk Fibroin-Based Non-Crosslinking Thermosensitive Bioinks for 3D Bioprinting Juo Lee(Sunchon National University), Iksong Byun, Hoon Seonwoo*
13:36~13:48	108	Diatom-Encapsulated Hydrogels: Green Approach for Gibberellic Acid Delivery in Sustainable Agriculture Mahesh P. Bhat(Chonnam National University), Jae-Ho Lee, Cheol Soo Kim, Kyeong-Hwan Lee*
13:48~14:00	109	Copper-Iron Based Bimetallic MOF Decorated Natural Diatoms for the Delivery of Thiabendazole Vinayak Hegde(Chonnam National University), Mahesh P.Bhat, Jae-Ho Lee, Cheol Soo Kim, Kyeong-Hwan Lee*

Copper-Iron Based Bimetallic MOF Decorated Natural Diatoms for the Delivery of Thiabendazole

Vinayak Hegde¹, Mahesh P.Bhat¹, Jae-Ho Lee¹, Cheol Soo Kim², Kyeong-Hwan Lee^{1,3,4*}

Abstract

Crop disease and plant illness are serious concerns that impede plant growth and reduce agricultural productivity. Utilizing nanotechnology to administer active ingredients (AIs) unveils a chance of further enhancing the effectiveness of AIs and competitiveness in the agriculture industry. In this regards, the current study assessed the release of thiabendazole from lauric acid modified hybrid nanocomposite comprised of low-cost diatoms and a copper-iron based bimetallic MOF (DE-MOF-Tbz-LA). Here, lauric acid was used to develop the pH and temperature-triggered release system, where it also serves as a gatekeeper that facilitates a prolonged release. It was found that increasing the temperature from 27°C to 40°C enhanced the Tbz release rate. Additionally, DE-MOF-Tbz-LA demonstrated the highest rate of release under pH 5 condition. Such, temperature and pH responsive formulations are beneficial in controlled environment agricultural systems.

Keywords

Hybrid nanocomposite; stimuli responsive release; MOF.

Acknowledgment

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through the Open Field Smart Agriculture Technology Short-term Advancement Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (32204003) and Korea Smart Farm R&D Foundation (KosFarm) through Smart Farm Innovation Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) and Ministry of Science and ICT (MSIT), Rural Development Administration (RDA) (42103204).

¹Agricultural Automation Research Center, Chonnam National University, Gwangju 61186, Republic of Korea ²Department of Applied Biology, Chonnam National University, Gwangju 61186, Republic of Korea

³Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea

⁴BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea

^{*}Corresponding author: Kyeong-Hwan Lee (khlee@jnu.ac.kr)