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A B S T R A C T   

Estimating tree volume is crucial for managing apple orchards, as it reflects the nutritional status and vigor of the 
trees. However, accurate assessment of tree volume in apple orchards is challenging due to their complex 
structure. This study introduces a novel method for three-dimensional volume calculation of individual apple 
trees. Our approach facilitates the determination of pruning severity by analyzing the limb-to-trunk volume ratio 
and enables the creation of detailed pre- and post-pruning maps. We utilized a lightweight multi-camera system 
to reconstruct 3D point clouds of the trees and developed a voxel-based algorithm for tree volume calculation. 
This algorithm includes steps for interior filling, edge voxel thinning, and interior refilling. We validated our 
algorithm on seven apple trees by comparing the calculated volumes with the ground truth, determined using the 
water displacement method. The results showed that our voxel-based algorithm was highly effective in accu
rately calculating individual tree volumes from 3D point clouds. The algorithm also demonstrated a high coef
ficient of determination (0.994) and a mean absolute percentage error of 2.919% in a linear regression analysis 
against the ground truth. Furthermore, we produced detailed tree volume and pruning severity maps for indi
vidual trees, both before and after pruning. In conclusion, this study offers an effective solution combining 3D 
imaging and volume calculation techniques to accurately estimate individual apple tree volumes, providing a 
quantitative assessment of pruning severity.   

1. Introduction 

Tree volume is particularly important for managing fruit trees in 
orchards, as it reflects the nutritional and vigor status of the trees and 
plays a role in decision making for dormant orchard management, such 
as pruning (Morgan et al., 2006; Lordan et al., 2015; Mahmud et al., 
2021; Wang et al., 2021). However, measuring tree volume presents 
technical challenges, primarily due to irregular shapes and complex 
branching patterns of trees. Accurate quantification of tree volume in
volves time-consuming and labor-intensive methods, which are costly 
and impractical for large-scale application. 

The volume of a fruit tree can be manually measured using xylometry 
methods, such as the water displacement method (Bienert et al., 2014). 
However, this method results in damage to the fruit tree and requires 

manual processing. Alternatively, model-based methods that utilize 
certain tree parameters can preserve the tree’s integrity but are unable 
to determine its volume with high accuracy. For instance, a study used 
parameters such as tree height, stem diameter, and branching skewness 
in a prediction model to estimate the tree volume and obtained an ac
curacy of 25.58 % (Kankare et al., 2013). 

Computer vision and three-dimensional (3D) remote sensing tech
nologies can effectively overcome the limitations of existing manual and 
model-based methods. In addition to providing depth and structural 
information, a digital 3D model of complex branches can be recon
structed from the original physical world with identical characteristics. 
Compared with terrestrial laser scanning, multi-view imaging based on 
structure from motion (SFM) has the potential to reconstruct dense 3D 
point clouds of trees under field conditions using economically 
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affordable and user-friendly RGBD cameras (Sun et al., 2020). 
After trees are scanned by cameras, tree volume estimation can be 

efficiently and labor-sparingly performed using 3D point clouds. An 
increasing number of studies have confirmed the accuracy of tree above- 
ground biomass or tree volume measurements derived from 3D point 
clouds using Quantitative Structure Measurement (QSM) techniques. 
These measurements are validated by comparing them with values ob
tained through destructive methods (Burt et al., 2021; Demol et al., 
2021a,b). The QSM is a geometric model that provides a hierarchical 
description of a tree’s above-ground structure. For instance, TreeQSM, a 
tree model based on QSM, is capable of reconstructing a tree’s structure 
using proximity relationships and geometric properties of the point set, 
which captures the topological branching structure of the tree. The to
pology of the entire tree is fitted to the point clouds of a single tree by 
fitting cylindrical surfaces to it, and the volume of each cylindrical 
section is calculated. This approach enables the calculation of the vol
ume of the trunk and branches (Krishna Moorthy et al., 2020). Addi
tionally, TreeQSM was further extended to the AdTree method, which 
has shown robustness across different types and sizes of trees (Fan et al., 
2020a). However, QSM-type methods require a significant amount of 
computation and high-quality input data. 

Tree skeleton extraction benefits from an understanding of the 
overall structure of trees (Bucksch et al., 2010; Yang et al., 2022; You 
et al., 2022). A single-tree-level volume estimation method was pro
posed, integrating skeleton extraction, topology optimization, and 3D 
reconstruction (Fan et al., 2023). This method addresses the problem of 
tree sagging branches, which can lead to misjudgments, by utilizing 
skeletonization processing to improve the accuracy of tree volume 
estimation. However, there may be discrepancies in the modeling results 
for trees with very complex branches, obscure branching, or branches 
with abnormal orientations. Additionally, the algorithm in their 
research requires extracting the skeleton points step by step in several 
iterations, which, although ensuring accuracy, consumes more memory 
and computation time. Similar to the QSM-based method, this algorithm 
demands high-quality input model data. The quality is particularly 
crucial for discontinuous fine branches in point clouds, as it can signif
icantly impact the skeletonization process. 

The point-cloud voxelization method is widely used for volume 
quantification of 3D point clouds (Xu et al., 2021). This method effec
tively simplifies the 3D point cloud of trees’ complex branching struc
tures into manageable volumetric units. A straightforward approach to 
calculate volume is to sum the volume of all filled voxels after mapping 
the 3D point cloud onto a voxel structure, which requires minimal 
computational resources. However, the volume estimation using this 
voxelization method still depends on a uniform voxel size. Conse
quently, a large voxel size often leads to significant overestimation of 
tree volume. Conversely, a small voxel size, smaller than the diameter of 
the stem or branch, may result in underestimation because it misses the 
voxels located inside large branches and stems, rendering them unusable 
for volume calculation (Qi et al., 2021). The conventional voxel method 
has not been able to determine a specific voxel size that would allow for 
accurate volume estimation. Moreover, the previous voxelization 
methods, which solely relied on adjusting voxel size, could not accu
rately assess both trunk and branch volumes of trees. Hosoi et al. (2013) 
improved the voxel-based method by filling the inner parts of the voxels. 
Although this approach reduced the error in volume estimation 
compared to the conventional method, the number and distribution of 
points in each voxel remained uncertain. Consequently, certain voxels 
were only partially filled with points, leading to volume overestimation, 
particularly in the small branches and the surface voxel of model. 

Dual contouring (DC)-based technologies are popular for surface 
reconstruction and rendering in voxelization models (Hutchison et al., 
2010). They generate smooth, high-accuracy surfaces from discrete in
puts such as voxel grids. Unlike traditional DC methods, which compute 
vertex locations and edge crossings using hand-crafted functions reliant 
on hard-to-obtain surface gradients, neural dual contouring employs a 

neural network to predict these elements. This approach results in 
improved surface reconstruction accuracy and better feature preserva
tion. However, the effectiveness of this technology is significantly 
influenced by the sparsity of the point cloud and the level of noise (Chen 
et al., 2022; Liu et al., 2023). For example, the fine and interlaced 
branches at the ends of apple trees often result in surface hollows or 
adhesion phenomena. Additionally, the voxel models created after sur
face reconstruction are not cube-shaped, necessitating additional steps 
for accurate volume estimation. Therefore, a key optimization for vol
ume calculation algorithms is not just filling the internal empty spaces 
but also optimizing the side lengths of the voxels on the model’s surface. 
This is crucial not only for accurate shape modeling but also for main
taining the original geometric characteristics of cubes to facilitate vol
ume calculation. 

Dormant pruning is necessary for orchard management to control 
tree vigor and achieve an appropriate balance between vegetative and 
reproductive growth to improve fruit yield and quality (Zai-long, 1983). 
Various pruning methods exist, including mechanical and manual 
pruning, based on different pruning strategies and rules (He and Schupp, 
2018). However, the quantification of pruning severity is difficult owing 
to the complex branching structures of trees (Schupp et al., 2017). 
Previously, the limb-to-trunk ratio (LTR) was used to estimate pruning 
severity by dividing the sum of the cross-sectional area of all branches on 
a tree at 2.5 cm from their union to the central leader by the trunk cross- 
sectional area at 30 cm above the graft union (He and Schupp, 2018). 
However, manual measurement of the LTR index is generally time- 
consuming and laborious. Typically, volume changes in trees can 
directly reflect changes in biomass and vigor to a certain extent. If the 
LTR pruning severity index calculation is converted from an area to 
volume basis, the pruning magnitude can be conveniently calculated by 
comparing the limb-to-trunk volume ratio (LTVR) before and after 
pruning. The pruning operation mainly focuses on the rational removal 
of branches from fruit trees. However, to calculate the LTVR index, an 
accurate assessment of the volume of the fine branches is essential. 

Therefore, in this study, a novel voxel-based algorithm is developed 
to accurately estimate the trunk and branch volume of fruit trees by 
filling inner voxels and compressing the voxels to adapt the point cloud 
shape and calculate LTVR to analyze the severity of different pruning 
methods. The specific objectives include (1) collecting images by 
designing a lightweight multi-camera system in the orchard and per
forming 3D reconstruction of all the trees therein; (2) developing a 
voxel-based volume calculation algorithm that includes interior filling, 
edge voxel thinning, and interior refilling; (3) comparing the proposed 
method with established methods; and (4) executing the proposed al
gorithm to estimate the entire volume and LTVR of all apple trees and 
perform pruning severity mapping. 

2. Materials and methods 

2.1. Experimental field and pruning methods 

The study was conducted in a multi-variety apple orchard at the 
Apple Use Research Institute in Geochang city, Gyeongsangnam-do, 
South Korea (latitude: 35◦43′9.07″N; longitude: 127◦54′6.72″E). The 
selected experimental plot consisted of slender spindle type eight-year- 
old Honglo/M9 apple trees, which are commonly planted in orchards 
to achieve high tree densities and early production (Robinson et al., 
1991). The slender spindle system allows for partial pruning mechani
zation, which can reduce the costs of pruning, hand thinning, and har
vesting. The experimental plots comprised nine rows with varying tree 
intervals: 1 m intervals in rows 1–3, 1.5 m intervals in rows 4–6, and 2 m 
intervals in rows 7–9 (Fig. 1a). Each row was approximately 70 m in 
length, and the interval between neighboring rows was 4 m. Two 
pruning methods were employed: mechanical pruning and manual 
pruning. Rows 1, 4, and 7 were pruned mechanically using a non- 
selective pruning system, which involves a cutting machine being run 
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over the rows while maintaining a predetermined distance from the 
trees (He and Schupp, 2018). The pruning machine kept at a distance of 
0.5 m from the tree trunk and at an angle of 10 degrees from the tree 
trunk. Rows 3, 6, and 9 were pruned manually by experienced growers, 
taking into consideration illumination and tree-vigor balance based on 
the fruit tree pruning strategy. Rows 2, 5, and 8 underwent a combi
nation of mechanical and manual pruning. Initially, the trees were 
pruned by the machine, and then the insides of the trees were manually 
repruned by the growers (Fig. 1b). 

2.2. Reconstruction of 3D point cloud images 

A multi-camera system consisting of five GoPro 7 cameras (GoPro 
Inc., San Mateo, CA) was mounted on a single aluminum profile with a 
vertical spacing of 0.8 m between cameras, as shown in Fig. 2(a). The 
system was mounted on a vehicle and moved at a speed of 0.5 ms− 1 

between rows, scanning both sides of apple trees in the orchard. The 
cameras were set to record 4 k (4,000 × 3, 000 pixel) resolution video at 
30 frames per second (FPS) with a wide field of view (122.6◦

× 94.4◦ ). 
Therefore, each camera captured a view of a 3.65m × 2.16m tree plane 

Fig. 1. Experiment field and pruning methods: (a) dimensions of the experimental test site, and (b) mechanical and manual pruning methods.  

Fig. 2. Configuration of 3D point cloud image acquisition in the apple orchard: (a) image acquisition system consisting of five GoPro cameras scanning both sides of 
the trees, (b) a scale bar used to establish a local 3D Cartesian coordinate system and calibrate the size of the reconstructed 3D point cloud, and (c) a reconstructed 
point cloud image containing approximately 15 million points. 
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at a distance of 1 m. The camera configuration and layout ensured that 
the views of every two adjacent images overlapped by more than 60% in 
the vertical direction, which was optimal for 3D reconstruction. A total 
of 365 trees were scanned. The pre-pruning images were acquired on 
February 03, 2021, and the post-pruning images were collected on 
February 23, 2021, both being sunny days. 

To reconstruct the 3D point cloud image, a hand-made scale card
board was positioned at each tree row and captured by the cameras 
during image acquisition (Fig. 2b). The rectangular scale cardboard 
comprised four markers, allowing the establishment of a local 3D Car
tesian coordinate system with coordinates assigned to each marker, such 
as (− 0.07, 0.1, 0), (0.07, 0.1, 0), (0.07, − 0.1, 0), and (− 0.07, − 0.1, 0). 
The rectangle measured 0.14 m in length and 0.2 m in width, therefore 
corresponding to an actual physical scale and serving to calibrate the 
size of the 3D point cloud. As shown in Fig. 2(b), the x-axis was aligned 
with the tree row direction. The y-axis formed a 90◦ angle with the x-axis 
on the ground, and the z-axis pointed upward, aligning with the direc
tion of the tree trunk. 

The 3D model of apple trees was generated with the traditional 
multi-view SFM algorithm based on bundle adjustment using Agisoft 
Metashape Professional software (v1.8.4, Agisoft LLC, St. Petersburg, 
Russia). This involved three primary steps: feature point matching, 
camera pose estimation, and 3D reconstruction. The images were ob
tained from the recorded video with a sampling of every 5 frames. For 
the image alignment operation, the upper limits were set to 40,000 key 
points and 4,000 matching points for each image. Owing to the presence 
of identical feature points on the cardboard, which were captured by the 
bottom cameras on both sides of the trees, the images from both sides of 
the trees could be matched effectively. The SFM algorithm processing 
based on bundle adjustment was executed to calculate the camera pose, 
and the four markers on the rectangular scale cardboard were manually 
masked in images to transform the original coordinates to the target 
coordinates. A mild depth filter was applied to eliminate outlier points 
resulting from poor input imagery due to alignment and focus issues 
(Tinkham and Swayze, 2021). Finally, a dense 3D point cloud was 
reconstructed using the ultra-quality mode (Fig. 2c). 

2.3. Tree volume calculation 

The methodology for calculating tree volume, as illustrated in Fig. 3, 
comprises the following steps: (1) extraction of individual trees, which 
includes preprocessing of the 3D point cloud, denoising, and voxeliza
tion; (2) calculation of trunk, branch, and overall tree volume using the 
proposed voxel-based algorithm; and (3) mapping of the tree volume 
and pruning severity onto an actual orchard image. 

2.3.1. Preprocessing and voxelization of 3D point cloud 
In this study, we focused on developing a novel method for tree 

volume calculation. Therefore, the extraction of individual trees was 
manually executed using CloudCompare V2.12, which is an open-source 
software for 3D point cloud processing with several advanced algo
rithms, such as resampling, registration, statistical computation, and 
interactive segmentation (Girardeau-Montaut, 2016). After removing 
the ground and tree supporting devices in the 3D point cloud and 
extracting the individual trees, the space sampling tool in CloudCom
pare was used to downsample the 3D point cloud of every tree and 
maintain the minimum distance between points from 0.37 mm to 1 mm. 
Additionally, a statistical-based filter was used to eliminate noise and 
outliers from the 3D point cloud (Han et al., 2017). The number of points 
used for mean distance estimation and the standard deviation multiplier 
threshold in the statistical-based filter were set to 50 and 0.5, respec
tively. The size of the tree’s point could be significantly reduced from its 
original size (62 ~ 107 MB) to the filtered size (8 ~ 22 Mb), which 
greatly saved computing resources and improved processing speed. 
After calculating the volume of the entire apple tree, the 3D point cloud 
of each tree was manually segmented into trunk and branch parts. The 

proposed algorithm is based on the voxelization method depicted in 
Fig. 3. 

2.3.2. Interior filling of the 3D voxel model 
The voxel-based method employs 3D grids with a specific voxel size 

to organize the discrete 3D point cloud of individual trees and adds the 
volume of all filled voxels to estimate the tree volume. Each filled voxel 
contains at least one point, named as an edge voxel, and the 3D voxel 
model is divided into different layers in the Z-direction (Fig. 4). How
ever, setting a small voxel size to obtain a high-quality 3D voxel model 
can cause the inner voxels, named as occluded voxels, in the stem and 
large branches that do not contain any points in the tree to be missed in 
the volume calculation, resulting in an underestimated volume. There
fore, to improve the accuracy of the volume calculation, the identifica
tion of occluded voxels and the interior filling of the 3D voxel model are 
necessary. The following steps were taken to detect the occluded voxels: 

Step 1: The voxels in each column of the k-th layer are scanned from 
Xmin to Xmax in the Y-direction (Fig. 4a). The voxels cijk(xi, yj, zk) in 
this column of xi are marked if the edge voxels of the tree existed in 
this Y-direction. 
Step 2: Furthermore, the voxels in each row of the k-th layer are 
scanned from Ymin to Ymax in the X-direction (Fig. 4b). The voxels 
cijk(xi, yj, zk) in this row of yj are marked if the edge voxels of the tree 
existed in this X-direction. If the voxels are marked twice, the voxels 
cijk(xi, yj, zk) are included in the candidate list of occluded voxels. 
Step 3: If the neighborhood voxels (top, bottom, left, and right) of 
candidates existed in the candidate list or the edge voxels of the tree, 
the candidates remain in the candidate list. Otherwise, the candi
dates are removed from the list. 
Step 4: Step 3 is repeated until the number of candidates in the list 
remain unchanged. The candidates in the list represent the occluded 
voxels of the 3D voxel model, as indicated by the red grids in Fig. 4 
(d). 

Compared to traditional 3D mathematical morphology and interpo
lation methods, the proposed method was less affected by individual 
voxels or voxel groups, such as noise or branch points, that were close to 
the contour of trunks and large branches (Gorte and Pfeifer, 2004; Hosoi 
et al., 2013). The area of the total interior filling in each section of the 
tree (SIFk, m2) could be calculated by counting the number of occluded 
voxels using Eq. (1). 

SIFk = Nk • lv
2 (1) 

where Nk represents the number of occluded voxels in the k-th layer, 
and lv(m) is the voxel size. 

2.3.3. Refinement of edge voxels 
To allocate all 3D points of the tree to voxels with a specific size, 

voxelization is performed (Fig. 5). However, the number and distribu
tion of points in each voxel are uncertain, resulting in certain voxels 
being partially filled with points, leading to volume overestimation, 
especially for small branches. While using a small voxel size reduces the 
empty area in edge voxels to some extent, it also leads to the identifi
cation of more occluded voxels, resulting in heavier computation. 
Furthermore, voxelization fails when the voxel size is smaller than the 
point interval in the 3D point cloud. 

Therefore, the voxel size should be adapted to the actual point 
distribution of the tree, especially for voxels at the edge of the 3D voxel 
model (Fig. 5c). To achieve this, an axis-parallel voxel-refinement 
method is developed. The equal grid of each edge voxel cijk(xi, yj, zk)

filled with points of the tree in the k-th layer is converted to an axially 
aligned bounding box (AABB). This rectangle bounding box is used to 
define the boundary. The sides of AABB are parallel to the axis of co
ordinate system. The vertices {min

(
cijk[x]

)
,max

(
cijk[x]

)
,min

(
cijk[y]

)
,
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max
(
cijk[y]

)
} of AABB are based on the minimum and maximum pro

jections of points in the voxels cijk(xi, yj, zk) along the X- and Y-di
rections, respectively. AABB can shrink the boundary of the equal grid of 
the voxel based on the shape of inner points in the axis direction as 

shown in the transformation from Fig. 5(b) to Fig. 5(c). However, if the 
neighborhood voxels (top, bottom, left, and right) of an edge voxel are 
also edge voxels, then this edge voxel will not participate in the 
refinement processing. The area of the refinement bounding box in the 

Fig. 3. Process of tree volume calculation and pruning severity mapping.  
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k-th layer (SETk ,m2) can be calculated as follows: 

SETk =
∑

i,j

[⃒
⃒max

(
cijk[x]

)
− min

(
cijk[x]

)⃒
⃒ •

⃒
⃒max

(
cijk[y]

)
− min

(
cijk[y]

) ⃒
⃒
]

(2) 

where max(cijk[x]) and min(cijk[x]), and max
(
cijk[y]

)
and min

(
cijk[y]

)

denote the maximum and minimum values of the point set of the voxel 
cijk(xi, yj, zk) in the X- and Y-directions, respectively. 

2.3.4. Interior refilling of the 3D voxel model 
Refinement of the original voxels generates gaps between the thin

ned bounding boxes (red dashed box) and neighboring occluded (inner) 
voxels (blue box) (Fig. 6a). Interior refilling is performed to obtain a 
high-precision section area of the tree. For each refined voxel, the 
neighboring voxels are checked. If a side of the refined voxel is adjacent 
to an occluded voxel, it is marked with deep green lines, as shown in 
Fig. 6(a). The side of the refined bounding box is extended to the side 
face of the corresponding neighboring occluded voxel, as indicated by 
the arrows in Fig. 6(a). If the sides of the refined bounding box have 
more than one neighboring occluded voxel, the number of extending 
operations is based on the number of neighboring occluded voxels, and 
the extending order follows the clockwise direction (first extending by 
step ① and then step ② in Fig. 6a). The blue-filled rectangles in Fig. 6(b) 
indicate the areas of interior refilling, and no empty space exists 

between the refined bounding box and occluded voxels. 
The vertex coordinates of the interior refilling rectangle can be 

defined in four different cases based on the position relation between the 
refined bounding box and neighboring occluded voxels. 

Case 1: When the adjacent occluded voxel is located above the 
refined bounding box, the interior refilling rectangle can be determined 
using the upper-left (vertex 1) and lower-right (vertex 2) vertices, as 
shown in Fig. 7(a). 

SRF upk =
∑

i,j

[⃒
⃒max

(
cijk[x]

)
− xi

⃒
⃒ •

⃒
⃒max

(
cijk[y]

)
− yj+1

⃒
⃒
]

(3) 

where SRF upk (m2) denotes the area of interior refilling in the k-th 
layer for case 1, and xi and yj+1 represent the x and y coordinate values, 
respectively, of the voxel ci(j+1)k(xi,yj+1,zk). 

Case 2: When the adjacent occluded voxel is located at the right of 
the refined bounding box, the interior refilling rectangle can be deter
mined using the upper-right (vertex 1) and lower-left (vertex 2) vertices, 
as shown in Fig. 7(b). 

SRF rk =
∑

i,j

[⃒
⃒max

(
cijk[x]

)
− xi+1

⃒
⃒ •

⃒
⃒min

(
cijk[y]

)
− yj+1

⃒
⃒
]

(4) 

Where SRF rk (m2) indicates the area of interior refilling in the k-th 
layer for case 2, and xi+1 and yj+1 represent the x and y coordinate values, 

Fig. 4. Recognition of the occluded voxels in the voxel model: (a) scanning in y-direction, (b) scanning in x-direction, (c) candidates of the occluded voxels that are 
scanned in both y and x directions, and (d) identification of the occluded voxels. 
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respectively, of the voxel c(i+1)(j+1)k(xi+1,yj+1,zk). 
Case 3: When the adjacent occluded voxel is located at the bottom of 

the refined bounding box, the interior refilling rectangle can be deter
mined using the lower-right (vertex 1) and upper-left (vertex 2) vertices, 
as shown in Fig. 7(c). 

SRF dk =
∑

i,j

[⃒
⃒min

(
cijk[x]

)
− xi+1

⃒
⃒ •

⃒
⃒min

(
cijk[y]

)
− yj

⃒
⃒
]

(5) 

where SRF dk (m2) denotes the area of interior refilling in the k-th 
layer for case 3, and xi+1 and yj represent the x and y coordinate values, 
respectively, of the voxel c(i+1)jk(xi+1,yj, zk). 

Case 4: When the adjacent occluded voxel is located at the left of the 
refined bounding box, the interior refilling rectangle can be determined 
using the lower-left (vertex 1) and upper-right (vertex 2) vertices, as 
shown in Fig. 7(d). 

SRF lk =
∑

i,j

[⃒
⃒min

(
cijk[x]

)
− xi

⃒
⃒ •

⃒
⃒max

(
cijk[y]

)
− yj

⃒
⃒
]

(6) 

where SRF lk (m2) indicates the area of interior refilling in the k-th 

layer for case 4, and xi and yj represent the x and y coordinate values, 
respectively, of the original voxel cijk(xi, yj, zk) of the thinned bounding 
box. 

Therefore, the total interior refilling area (SRFk ,m2) in the k-th layer is 
obtained by adding the individual refilling areas in the four cases. 

SRFk = SRF upk + SRF rk + SRF dk + SRF lk (7)  

2.3.5. Volume calculation using the proposed method 
As discussed in the previous sections, the section area in each layer 

was corrected by applying interior filling of the 3D voxel model, thin
ning of edge voxels, and interior refilling of the 3D voxel model. The 
volume in the k-th layer (Vk,m3) can be calculated based on the voxel 
size lv (m) and the section area of interior filling, thinned edge voxels, 
and interior refilling using Eq. (8). 

Vk =
(
SIFk + SETk + SRFk

)
• lv (8) 

The total volume V (m3) of the tree can be calculated by summing the 
volume of each layer. 

Fig. 5. Edge voxel refinement: (a) 3D point cloud of trunk, large branch, and small branch section, (b) voxelization of the 3D point cloud, and (c) refinement of the 
original voxels. 
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V =
∑N

k
Vk (9) 

where N denotes the number of layers depending on the voxel size lv. 
The small voxel size results in a precise voxelization model with more 
layers. 

The trunk, which is the central wooden axis of the tree from bottom 

to top, was distinguished from the rest of the tree, which is considered to 
be the branches. To calculate the LTVR, the 3D point cloud of the tree 
was separated into the trunk and branch parts. The LTVR of each tree 
can be obtained using Eq. (10). 

LTVR =
VB

VT
(10) 

Fig. 6. Interior refilling of 3D voxel model: (a) extension of the sides of refined bounding boxes to the neighboring inner voxels, and (b) interior refilling section area 
of the truck section. 

Fig. 7. Different conditions for calculation of the interior refilling area: (a) adjacent occluded voxel located above the refined bounding box (case 1), (b) adjacent 
occluded voxel located at the right of the refined bounding box (case 2), (c) adjacent occluded voxel located at the bottom of the refined bounding box (case 3), and 
(d) adjacent occluded voxel located at the left of the refined bounding box (case 4). 
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where VB (m3) and VT (m3) denote the volume of branch and trunk in 
each tree, respectively. 

2.4. Evaluation and statistical analysis 

2.4.1. Evaluation of tree volume measurement 
To validate the performance of the proposed tree volume calculation 

algorithm, seven trees of different sizes were selected, and the mean 
absolute percentage error (MAPE) was computed using Eq. (11). 

MAPE =

∑N
n
|Vn − Vn |

Vn

N
× 100% (11) 

where Vn (m3) denotes the calculated volume using the proposed 
algorithm, Vn (m3) represents the ground truth of the tree volume 
measured by the water displacement method, and N represents the 
number of trees used for testing. The water displacement method cal
culates the tree volume by manually measuring the change in water level 
in a water-filled gauged cylinder after completely submerging the 
chopped tree in the cylinder. Before manual measurement, the selected 
trees were divided into trunk and branch parts, and the volume of each 
part was measured. The volume of the whole tree was obtained by 
summing up the volumes of the trunk and branch parts. The MAPE for 
the volume estimation of the trunk and branch parts was also calculated 
using Eq. (11). Additionally, to validate the correlation between the 
estimated volume and the ground truth, the coefficient of determination 
(R2), the root mean squared error (RMSE), and the relative root mean 
squared error (rRMSE), presented in Eq. (12), of the linear regression 
were calculated. The rRMSE, which represents the normalization of the 

RMSE, allows for the comparison of errors across different methods 
while minimizing the impact of the object scale problem. 

rRMSE =
RMSE

1
N

∑N
n Vn

× 100% (12) 

As the proposed algorithm was voxel-based, the voxel size was an 
influencing parameter for the accuracy and efficiency of volume calcu
lation. Therefore, we optimized the voxel size by minimizing the RMSE. 

2.4.2. Statistical analysis of ΔLTVR 
The pruning severity of different pruning methods commonly used in 

orchards was evaluated by analyzing the variation in LTVR. The change 
in the volume of individual trunk and branch parts of trees in the 
experimental field was calculated using the proposed algorithm based 
on the pre- and post-pruning 3D data. The difference in LTVR (ΔLTVR) 
before and after tree pruning was examined using two-way analysis of 
variance (ANOVA) with two parameters, the tree pruning method and 
planting interval. The ΔLTVR values were then mapped onto the orchard 
image and visualized as pruning severity. 

3. Results and discussion 

3.1. Voxel size optimization 

The voxel size used in the voxel-based volume calculation method is 
a crucial input parameter. When the voxel size is reduced, the 3D point 
cloud is converted into a highly refined 3D voxelization model with 
numerous voxels, as seen in the voxelization models with different voxel 
sizes in Fig. 8(a). However, this also increases the number of occluded 

Fig. 8. Characteristics of voxelization with different voxel sizes: (a) 3D voxelization model with various voxel sizes, and (b) processing time of voxelization and error 
of tree volume estimation at different initial voxel sizes across seven trees. 
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voxels in the trunk and large branches that do not contain any tree 
points, which are missed in the volume calculation. Conversely, edge 
voxels are directly dependent on voxel size and become more accurate 
for volume calculation as the voxel size decreases. The conventional 
voxelization method does not account for voxel size, resulting in a 
hollow voxelization model with small voxel sizes and a redundant 
voxelization model with large voxel sizes, as shown in Fig. 8(a). 

With a variation in the initial voxel size, the error in volume esti
mation differs as empty areas still exist in the refined edge voxels. Fig. 8 
(b) shows the RMSE values of tree volume estimation with different 
initial voxel sizes ranging from 4 mm to 20 mm represented by a red line. 
The RMSE of volume estimation is observed to decrease with a decrease 
in the initial voxel size to 6 mm, and then it increases with an increase in 
voxel size. However, it is noticed that when the voxel sizes are less than 
6 mm, the tree volume is underestimated. This happens because the 
minimum space between adjacent 3D point clouds results in an empty 
space between adjacent refined bounding boxes that belong to the tree 
and are not considered in volume calculation. As the voxel size ap
proaches or becomes less than the minimum space, more empty area is 
generated between the new adjacent refined edge voxels, leading to 
underestimation of the tree volume. Based on the RMSE analysis, the 
volume calculation with a voxel size of 6 mm achieves the highest ac
curacy. Furthermore, Fig. 8(b) shows that the processing time decreases 
with larger voxel sizes. The running time decreased more gradually for 
voxel sizes larger than 6 mm. Considering both the error in volume 

estimation and the processing time for voxelization, an initial voxel size 
of 6 mm is selected for estimating the volume of apple trees, maintaining 
a minimum space of 1 mm between 3D points. 

3.2. Comparison of the proposed algorithm with established methods 

Fig. 9 presents the linear regressions of the tree volume estimation: 
the ground truth comparison with the voxelization methods with 
different voxel sizes is depicted. These methods include conventional 
voxelization with voxel sizes of 20 mm and 6 mm, and the proposed 
method, which utilizes an initial voxel size of 6 mm. The volume esti
mation by the proposed method is close to the ground truth (R2 = 0.994, 
MAPE = 2.919 %). The conventional voxelization method is influenced 
by the voxel size. In this study, the conventional voxelization method 
with a voxel size of 6 mm (RMSE = 0.0089 m3) exhibits a lower error 
than that with a voxel size of 20 mm (RMSE = 0.1114 m3). However, it is 
still difficult to determine the optimum voxel size due to different and 
uncertain object structures. 

The proposed voxelization method for tree volume measurement 
shows superior performance compared to the conventional methods. 
The proposed algorithm involves interior filling, edge voxel refinement, 
and interior refilling, resulting in a complete 3D voxelization model. 
Unlike the conventional voxelization methods, the proposed method can 
decrease the error of volume calculation at each step, as shown in 
Fig. 10. The gray-colored bar represents the tree volume measurement 

Fig. 9. Linear regression analysis of tree volume estimation: (a) and (b) conventional voxelization method with a voxel size of 20 and 6 mm, respectively, and (c) the 
proposed method with an initial voxel size of 6 mm. The symbol “#” indicates an extreme MAPE value that is greater than 100 %. The shaded area represents a 95 % 
confidence interval. 
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using the conventional voxelization method with a voxel size of 6 mm. 
Since the cloud points of trees are not evenly distributed in the edge 
voxels, refining edge voxels in the proposed method can contribute to 
reducing the volume measurement. The dark blue and light blue bars 
represent the volumes obtained by interior filling and edge refinement in 
the proposed method, respectively. The dark blue bar reflects the vol
ume of the tree trunk and large branches, which have similar volumes 
across the trees since they were trained using the same apple tree sys
tem. The light blue bar mainly reflects the volume of small branches, 
which shows some variation across trees. 

In this study, the pruning severity index is defined as LTVR, which 
represents the volume ratio of the branch to the trunk. Therefore, ac
curate estimations of tree trunk and branch volume are necessary. The 
individual volumes of the trunk and branches were measured using the 
proposed algorithm with an initial voxel size of 6 mm. The linear re
gressions of the trunk and branch measurements with the ground truth 
are analyzed, as shown in Fig. 11. The accuracies of the trunk and 
branch volume estimations are approximately 97 % (MAPE = 2.94 %) 
with an RMSE of 0.0004 m3 and approximately 94 % (MAPE = 5.57 %) 
with an RMSE of 0.0002 m3, respectively. Compared to the results re
ported by Hosoi et al. (2013), the accuracy of branch volume estimation 
by the proposed method is much higher than that (approximately 64 %) 
of the Hosoi method, which only considered inner filling processing. In 

the proposed method, the inner empty area of the 3D voxelization model 
was fully filled, and thus the primary error of volume estimation was 
from the volume of edge voxels. If the surface of the 3D point cloud is 
more complex, a greater number of edge voxels will be generated during 
the initial voxelization step. Therefore, edge voxel refinement and 
interior refilling become crucial for accurately measuring the tree vol
ume, particularly in trees with complex surface characteristics. Given 
that the trunk tends to have a thicker and simpler shape compared to the 
branches, the error in refining the edge voxels is lower for the trunk. 
Consequently, the overall error in the tree volume estimation is also 
lower for the trunk compared to the branches, as depicted in Fig. 11. 

To assess the accuracy of the proposed method, we compared its 
performance with that of three established methods: AdQSM (Fan et al., 
2020b), a skeleton-based method (Fan et al., 2023), and Allometric 
Scaling Models (ASM) (Bornand et al., 2023), as detailed in Table 1. 
These methods are utilized for reconstructing 3D point clouds of trees 
and calculating tree volume. Tree volume estimation is commonly 
conducted in the forestry domain, where the objects are larger than the 
fruit trees examined in our study. Consequently, the RMSE for these 
methods can be significantly higher than that for fruit trees. To mitigate 
this scale discrepancy, we employed the rRMSE. 

Our evaluation showed that the proposed method surpassed the 
other three methods in terms of tree volume estimation accuracy. The 

Fig. 10. Tree volume measurement by the conventional voxelization method with a voxel size of 6 mm, the proposed voxelization method at each step of interior 
filling, edge refinement, and interior refilling with an initial voxel size of 6 mm, and ground truth of tree volume. 

Fig. 11. Linear regression of the tree trunk and branch volume estimation between the proposed method and the ground truth: (a) volume estimation of trunk, and 
(b) volume estimation of branch. The shaded areas indicate a 95% confidence interval. 
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AdQSM, an advanced version of QSM, excels in reconstructing tree 
structures and, as a result, provides more accurate tree volume estima
tions than the other two methods. The effectiveness of the skeleton- 
based method heavily relies on the quality of input data and the 

skeletonization algorithm, which leads to moderate performance. 
Conversely, the ASM, a mathematical model designed for estimating the 
volume or biomass of a plant or animal based on size or specific mea
surements, demonstrated robustness in estimating the volume of 
convex-shaped objects like stems and canopies. However, its accuracy in 
predicting the volume of branches, typically concave-shaped and com
plex, was less reliable. 

In summary, the proposed method, by focusing on the distribution of 
the point cloud rather than the tree’s structure, enables precise volume 
estimation. By fine-tuning the voxel size to better match the point cloud 
distribution, the proposed method can accurately estimate the volume of 
not only large objects like the whole tree but also smaller components 
such as branches. 

Table 1 
Comparison of the proposed method and established methods for tree volume 
estimation.  

Method rRMSE (%) 

Whole tree Stem Branch 

AdQSM 22.62 – 36.86 
Skeleton-based method – 19.00 38.84 
ASM 25.39 23.71 153.51 
Proposed method 3.07 4.05 6.38  

Fig. 12. Tree pruning severity map: (a) the tree volume removed by different pruning methods, where the green solid circles with mesh patterns represent the tree 
volume retained after pruning, and the red annulus represents the volume removed by pruning, and (b) ΔLTVR of trees before and after pruning using different 
methods. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3.3. Pruning severity mapping 

In this study, a method was proposed to estimate the volumes of 
apple trees removed by pruning. The resulting volumes were projected 
onto an orchard map, as shown in Fig. 12(a). The green solid circles with 
mesh patterns represent the tree volume retained after pruning, while 
the red annulus regions indicate the volume removed by pruning. The 
total volume of each tree is the sum of the green solid circle and red 
annulus areas, which can directly reflect the growth status of the tree. 
The mechanical method shows less severity in pruning compared to the 
combination of mechanical and manual methods, and the manual 
method alone. This is indicated by the smaller red circular area in the 
mechanical method compared to the other two methods. The combi
nation of mechanical and manual methods prunes individual trees more 
precisely, resulting in a more uniform distribution of the red annulus on 
most of each tree. The tree interval is different, with 1 m (rows 1–3), 1.5 
m (rows 4–6), and 2 m (rows 7–9), which can be clearly recognized in 
the tree volume map (Fig. 12a). The pruning severity at the tree interval 
of 2 m is found to be less severe than that at 1 m and 1.5 m. Fig. 12(b) 
illustrates the difference in pruning index LTVR (ΔLTVR) before and 
after pruning at each tree. In general, the ΔLTVR value in the mechan
ical method is smaller than that in the combination of mechanical and 
manual pruning methods and the manual method alone, indicating less 
pruning severity in the mechanical method compared to the other two 
methods. The pruning severity at the tree interval of 2 m (rows 7–9) is 
found to be less severe than that at 1 m (rows 1–3) and 1.5 m (rows 4–6), 
which agrees with the results found in the tree volume map (Fig. 12a). 
Quantitative analysis of the pruning severity map enables the design of 
pruning strategies that optimize sunlight irradiation and enhance tree 
vigor based on the specific conditions of the orchard. 

3.4. Statistical analysis of pruning methods and tree intervals 

Based on the 3D reconstruction technology and the proposed volume 
calculation method, it was possible to calculate the pruning index LTVR 
of trees in the orchard. The ΔLTVR before and after pruning was ob
tained and used to quantitatively describe the pruning severity of each 
pruning method on trees. Additionally, the trees were planted at three 
different intervals (1, 1.5, and 2 m). The significance difference of the 
pruning methods and the tree intervals were analyzed using two-way 
ANOVA, as shown in Fig. 13. 

The mean ΔLTVR value of the combination of mechanical and 
manual pruning methods is the highest at all tree intervals, indicating 
that this method removes the most branches. In contrast, the mechanical 
pruning method shows the lowest ΔLTVR value, indicating that the 
volume of branches removed by this method is the least. This is because 
the mechanical method removes only the branches that can be reached 
by the cutting machine in a fixed position, and the volume of the 
removed branches depends on the selected cutting system area. On the 
other hand, the manual method is performed by growers based on their 
experience in pruning apple trees to achieve illumination and vigor 
balance. The combination of mechanical and manual methods involves 
first removing branches on the surface of the tree using the machine and 
then manually removing branches inside the tree. 

In the ANOVA analysis, there is a significant difference between the 
combination of mechanical and manual pruning methods and the me
chanical method alone at all tree intervals. The manual method shows a 
significant difference with the mechanical method at the tree interval of 
1 m and 1.5 m, while there is no significant difference at 2 m. There is no 
significant difference between the combination of mechanical and 
manual pruning methods and the manual method alone at all tree in
tervals. In the statistical analysis of tree intervals, there is a significant 
difference between 1 m and 2 m, while there is no significant difference 
between the closest tree intervals. Regarding the manual pruning 
method, the mean ΔLTVR value is the lowest at the tree interval of 2 m 
compared to the other two intervals. The space of 2 m between adjacent 

apple trees might be sufficient for illumination and tree vigor; thus, 
during manual pruning the grower might reduce the volume of the 
branches to be removed. The results of the statistical analysis shown in 
Fig. 13 agree well with those analyzed in the tree pruning severity map 
shown in Fig. 12. 

4. Limitations and future work 

The novel voxel-based algorithm developed in this study for 
measuring tree volume, which includes interior filling, edge voxel 
refinement, and interior refilling processes, has demonstrated superior 
performance compared to established methods. However, there are 
certain limitations and areas for future improvement that should be 
addressed. 

One limitation of the voxel-based algorithm is the need to pre- 
determine the initial voxel size, which was manually optimized in this 
study by comparing measurement errors and processing speed for 
different voxel sizes on a single tree. However, since the optimal initial 
voxel size can vary depending on the geometric characteristics of indi
vidual trees, it is necessary to develop an automatic optimization 
method that considers the unique geometric features of each tree. 
Integration of artificial intelligence technology can be explored to 
automate the optimization process for determining the initial voxel size. 

In this study, several preprocessing steps for voxelizing the 3D point 
cloud, such as background removal, individual tree extraction, down
sampling, and noise elimination, were performed manually using com
mercial software in separate steps. To expedite the commercialization of 
the voxel-based method, it is essential to integrate these preprocessing 
steps and the developed algorithm into a single software package for 
streamlined and efficient tree volume measurement. 

The experiments conducted in this study focused on a single type of 
apple tree. To generalize the algorithm and ensure its applicability to a 
broader range of scenarios, further experiments should be conducted on 
different types of apple trees with varying geometric characteristics, as 
well as on various other fruit trees like pear, peach, and orange. 

Another limitation is that tree volume measurements were 

Fig. 13. Two-way ANOVA of the ΔLTVR with the three pruning methods and 
the three tree intervals. “*,” “**,” and “***” represent P value < 0.05, P value <
0.01, and P value < 0.001, respectively. 
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performed only during the leafless period to estimate pruning severity 
using different pruning methods. However, extending the application of 
the voxel-based algorithm to measure tree biomass during the leafy 
growth period would enable monitoring of tree vitality at each stage of 
growth. By incorporating tree vitality measurements, optimized treat
ments on individual trees can be applied at different growth stages, 
leading to improvements in fruit yield and quality. 

Addressing these limitations and pursuing future work in these areas 
will enhance the practicality, versatility, and effectiveness of the voxel- 
based algorithm for tree volume measurement, benefiting orchard 
management practices and fruit production outcomes. 

5. Conclusions 

In this study, a high-quality 3D model of an apple orchard was 
reconstructed using a lightweight multi-camera platform and 3D 
photogrammetry technology. The resulting 3D point cloud data were 
utilized to calculate tree volume and determine pruning severity based 
on the LTVR index. This was accomplished using a novel voxel-based 
volume calculation algorithm that involved interior filling, edge voxel 
refinement, and interior refilling. To validate the algorithm, the volumes 
of seven apple trees were calculated using the proposed algorithm, and 
the obtained results were compared with those of three established 
methods. The results demonstrated that the proposed voxel-based al
gorithm was the most suitable for accurately calculating individual tree 
volumes using 3D point clouds. Additionally, the estimation of trunk and 
branch volumes using the proposed method yielded highly accurate 
results. Furthermore, tree volume and LTVR mapping using the obtained 
volume data for each tree were performed to visualize pruning severity. 
The analysis of the pruning severity map can facilitate the development 
of customized pruning strategies that account for the unique charac
teristics of the orchard, aiming to optimize sunlight exposure and 
enhance tree vitality. In the future, the extension of the voxel-based 
algorithm to measure tree biomass during the leafy growth period 
would facilitate the monitoring of tree vitality at each stage of growth, 
thereby enhancing orchard management practices and improving fruit 
production outcomes. 

CRediT authorship contribution statement 

Xuhua Dong: Data curation, Formal analysis, Visualization, Writing 
– original draft. Woo-Young Kim: Data curation, Investigation, Meth
odology. Zheng Yu: Data curation, Formal analysis, Investigation. Ju- 
Youl Oh: Investigation, Methodology, Supervision. Reza Ehsani: Su
pervision, Validation, Writing – review & editing. Kyeong-Hwan Lee: 
Conceptualization, Data curation, Formal analysis, Funding acquisition, 
Methodology, Supervision, Writing – review & editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgments 

This work was supported by Korea Institute of Planning and Evalu
ation for Technology in Food, Agriculture and Forestry (IPET) through 
the Advanced Agricultural Machinery Industrialization Technology 
Development Program (32003003) and the Open Field Smart Agricul
ture Technology Short-term Advancement Program, funded by Ministry 
of Agriculture, Food and Rural Affairs (MAFRA) (32204003). 

References 

Bienert, A., Hess, C., Maas, H.G., Von Oheimb, G., 2014. A voxel-based technique to 
estimate the volume of trees from terrestrial laser scanner data. Int. Arch. 
Photogrammetry, Remote Sensing Spatial Information Sciences 40 (5), 101. https:// 
doi.org/10.5194/isprsarchives-XL-5-101-2014. 

Bornand, A., Rehush, N., Morsdorf, F., Thürig, E., Abegg, M., 2023. Individual tree 
volume estimation with terrestrial laser scanning: Evaluating reconstructive and 
allometric approaches. Agric. For. Meteorol. 341, 109654 https://doi.org/10.1016/ 
j.agrformet.2023.109654. 

Bucksch, A., Lindenbergh, R., Menenti, M., 2010. SkelTre: Robust skeleton extraction 
from imperfect point clouds. Vis. Comput. 26, 1283–1300. https://doi.org/10.1007/ 
s00371-010-0520-4. 

Burt, A., Boni Vicari, M., Da Costa, A.C., Coughlin, I., Meir, P., Rowland, L., Disney, M., 
2021. New insights into large tropical tree mass and structure from direct harvest 
and terrestrial lidar. R. Soc. Open Sci. 8 (2) https://doi.org/10.1098/rsos, 201458.  

Chen, Z., Tagliasacchi, A., Funkhouser, T., Zhang, H., 2022. Neural Dual Contouring. 
ACM Trans. Graph. 41, 1–13. https://doi.org/10.1145/3528223.3530108. 

Demol, M., Calders, K., Krishna Moorthy, S.M., Van den Bulcke, J., Verbeeck, H., 
Gielen, B., 2021. Consequences of vertical basic wood density variation on the 
estimation of aboveground biomass with terrestrial laser scanning. Trees - Struct. 
Funct. 35 (2), 671–684. https://doi.org/10.1007/s00468-020-02067-7. 

Demol, M., Calders, K., Verbeeck, H., Gielen, B., 2021b. Forest above-ground volume 
assessments with terrestrial laser scanning: a ground-truth validation experiment in 
temperate, managed forests. Ann. Botany 128 (6), 805–819. https://doi.org/10. 
1093/aob/mcab110. 

Fan, G., Nan, L., Chen, F., Dong, Y., Wang, Z., Li, H., Chen, D., 2020a. A New 
Quantitative Approach to Tree Attributes Estimation Based on LiDAR Point Clouds. 
Remote Sens. 12, 1779. https://doi.org/10.3390/rs12111779. 

Fan, G., Nan, L., Dong, Y., Su, X., Chen, F., 2020b. AdQSM: A New Method for Estimating 
Above-Ground Biomass from TLS Point Clouds. Remote Sens. 12, 3089. https://doi. 
org/10.3390/rs12183089. 

Fan, G., Lu, F., Cai, H., Xu, Z., Wang, R., Zeng, X., Xu, F., Chen, F., 2023. A New Method 
for Reconstructing Tree-Level Aboveground Carbon Stocks of Eucalyptus Based on 
TLS Point Clouds. Remote Sens. 15, 4782. https://doi.org/10.3390/rs15194782. 

Girardeau-Montaut, D., 2016. CloudCompare. EDF R&D Telecom ParisTech, France.  
Gorte, B., Pfeifer, N., 2004. Structuring laser-scanned trees using 3D mathematical 

morphology. International Archives of Photogrammetry and Remote Sensing 35 
(B5), 929–933. 

Han, X.F., Jin, J.S., Wang, M.J., Jiang, W., Gao, L., Xiao, L., 2017. A review of algorithms 
for filtering the 3D point cloud. Signal Process. Image Commun. 57, 103–112. 
https://doi.org/10.1016/j.image.2017.05.009. 

He, L., Schupp, J., 2018. Sensing and automation in pruning of apple trees: A review. 
Agronomy 8 (10), 211. https://doi.org/10.3390/agronomy8100211. 

Hosoi, F., Nakai, Y., Omasa, K., 2013. 3-D voxel-based solid modeling of a broad-leaved 
tree for accurate volume estimation using portable scanning lidar. ISPRS J. 
Photogramm. Remote Sens. 82, 41–48. https://doi.org/10.1016/j. 
isprsjprs.2013.04.011. 

Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C., Naor, 
M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Sudan, M., Terzopoulos, D., Tygar, 
D., Vardi, M.Y., Weikum, G., Zhou, Q.-Y., Neumann, U., 2010. 2.5D Dual Contouring: 
A Robust Approach to Creating Building Models from Aerial LiDAR Point Clouds, in: 
Daniilidis, K., Maragos, P., Paragios, N. (Eds.), Computer Vision – ECCV 2010, 
Lecture Notes in Computer Science. Springer Berlin Heidelberg, Berlin, Heidelberg, 
pp. 115–128. Doi: 10.1007/978-3-642-15558-1_9. 

Kankare, V., Holopainen, M., Vastaranta, M., Puttonen, E., Yu, X., Hyyppä, J., Alho, P., 
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