THE 6TH CIGR INTERNATIONAL CONFERENCE 2024

ICC JEJU, KOREA

PROGRAM BOOK

DIGITAL AGRICULTURE

Day 1, May 20 (Mon.) | Scientific Program

Technical Section 3: Plant Production S3-3

16:30 - 18:00

Halla A (3F)

Chair(s): REZA EHSANI (University of California at Merced)

S3-3-01

Author

Co-author(s)

Optimizing accuracy in Al models: balancing real and synthetic data DAEUN CHOI (University of Florida)

16:30-16:45

OMEED MIRBOD (University of Florida)

S3-3-02

16:45-17:00

The innovation and application of precision agriculture technology in citrus orchards: a multidimensional study based on UAV remote sensing and deep learning

Author

YALI ZHANG (South China Agricultural University)

YUBIN LAN

Co-author(s)

Corresp. Author

XIAOYANG LU (South China Agricultural University) HAOXIN TIAN (South China Agricultural University) XIPENG FANG (South China Agricultural University) SHIZHOU WANG (South China Agricultural University)

S3-3-03

17:00-17:15

An Improvement to the CNN-Based semantic segmentation algorithm for better estimation of crop cultivation areas in Jeju Island

Author

DONG-WOOK KIM (Seoul National University)

Corresp. Author

HAK-JIN KIM (Seoul National University)

Co-author(s)

GYUJIN JANG (Seoul National University) PHU PHAM XUAN (VNU-HCM An Giang University)

YONG SUK CHUNG (Jeju National University)

S3-3-04

17:15-17:30

Reinforcement Learning-Based optimization of spraying paths: an End-to-End approach for comprehensive tree coverage in orchard robotics

Author

ANDONG HUANG (Chonnam national University)

Co-author(s)

YU ZHENG (Department of Convergence Biosystems Engineering, Chonnam

National University)

WOOYUNG KIM (Chonnam National University)

ÖMER FARUK İNCE (Agricultural Automation Research Center, Chonnam

National University)

KYEONG-HWAN LEE (Chonnam national University)

C2 2 0E

Optimizing inclined plate seed metering device performance using artificial

17:30-17:45

neural network

PEEYUSH SONI (Indian Institute of Technology Kharagpur)

Corresp. Author

PEEYUSH SONI (Indian Institute of Technology Kharagpur)

Co-author(s)

TAMA ROY (CNH Industrial)

S3-3-06 17:45-18:00 Damage classification of castor seeds based on modified AlexNet

Author

Author

JUNMING HOU (Shenyang Agricultural University)

Corresp. Author

JUNMING HOU (College of Engineering/Shenyang Agricultural University) WEI WANG (College of Engineering/Shenyang Agricultural UNIVERSITY)

Co-author(s)

ENCHAO YAO (College of Engineering/Shenyang Agricultural University)

ZHI MA (College of Engineering/Shenyang Agricultural University) XU LIU (College of Engineering/Shenyang Agricultural University)

Reinforcement Learning-Based Optimization of Spraying Paths: An End-to-End Approach for Comprehensive Tree Coverage in Orchard Robotics

Andong Huang^{1,3}, Yu Zheng ^{1,3}, Woo-Young Kim^{2*}, Ömer Faruk İnce ², Kyeong-Hwan Lee ^{1,2,3*}

Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, Korea
Agricultural Automation Research Center, Chonnam National University, Gwangju, Korea
BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Korea
* Corresponding author: email (khlee@jnu.ac.kr)

Abstract

In the field of modern agricultural automation, au tonomous spraying robots have become a key soluti on to alleviate the workload of farmers.^[1] Traditiona lly, these robots rely on dense GPS mapping for path planning. However, this method is cumbersome and requires frequent updates due to continuous environ mental changes.^[2] Our research introduces an innova tive end-to-end path generation model that employs deep reinforcement learning to achieve efficient and comprehensive coverage in orchard environments.

During the training phase, the method initially uses drones to collect elevation maps of the orchard to est ablish a training environment. Subsequently, combin ing multiscale maps and simulated obstacle detection sensor data as inputs to the deep reinforcement learning environment, a reinforcement learning agent equipped with a spraying simulator explores and gene rates paths within the environment. In the inference phase, the model only needs the orchard's elevation and tree position information to generate a path that ensures maximum coverage of the orchard trees with minimal distance. Thus, our approach only requires an elevation map with tree position information and a predefined starting point to autonomously plan the optimal

Keywords: Automatic Spraying Robots, Reinforc ement Learning, End-to-End Path Generation, Agric ultural Automation.

1. Introduction

As global population growth drives increased de mands on food production, advancements in agricult ural automation have become critical. Among these, autonomous spraying robots are pivotal for enhancin g crop management efficiency and reducing labor ne eds. Traditionally reliant on dense GPS mapping, the se robots face operational complexities and require f requent updates, limiting their practicality in dynami c agricultural settings.

Our study introduces an innovative end-to-end pa th generation model using deep reinforcement learni ng, enabling these robots to efficiently navigate orch ards without dense GPS data. The model's training i nvolves collecting orchard elevation maps via drone s, using these maps in conjunction with a reinforcem ent learning agent equipped with obstacle detection and spraying simulation to identify optimal paths. In the inference phase, the model requires only orchar d elevation and tree position data to generate paths t hat maximize coverage with minimal travel.

This approach aims to enhance agricultural auto mation's efficiency and reliability, supporting sustai nable agriculture and spurring further technological innovations.

2. Materials and Methods

This paper introduces an innovative end-to-end path generation method that utilizes unmanned aeria I vehicles (UAVs) to acquire topographic and tree p osition information of orchards, integrating these dat a into a deep reinforcement learning environment to enable an agent to learn and generate navigational paths through reward-based exploration. Initially, the UAVs collect topographic and tree position data, which are then transmitted to the deep reinforcement learning system. Here, the agent continuously explo res using the model, environmental feedback, and re ward signals, ultimately learning a path generation m odel. In the inference phase, this model can directly generate global paths suitable for practical navigation.

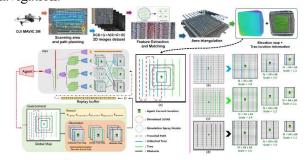


Figure 1. Path Generation System

2.1. Observational Space for the Deep Reinforceme nt Learning Network on Tree Coverage

To enable the agent to effectively learn paths covering the trees, we designed a specific observational space, mapped to feature representations suitable for neural network inputs. We prepared three maps: one with the location information of all collected trees, one showing the locations of all obstacles, and a global tree map containing all tree locations. These maps are represented as two-dimensional grid networks to accurately express the current state information of the agent. Additionally, to enhance the model's versa

tility, we designed multi-scale maps centered on the agent's current position as the observational space. T his introduction of multi-scale maps aims to maximi ze the retention of map information without needing to input all map details into the network, allowing t he model to be applicable to various map sizes.

2.2. Action Space for the Deep Reinforcement Learn ing Network on Tree Coverage

In our learning environment, we employed a disc rete action space including left turn by 9 degrees, rig ht turn by 9 degrees, and moving straight. This selec tion of actions helps maintain the smoothness and st ability of the agent during turns.

2.3. Reward Functions for the Deep Reinforcement Learning Network on Tree Coverage

Our goal is for the agent to cover all tree areas. T o this end, we defined two reward functions: one bas ed on the total number of trees collected at each time step, and another based on the ratio of the number o f trees currently collected to the total number of tree s in the map. To ensure the safety of the path, we als o designed a safety reward based on the distance bet ween the agent and the nearest obstacle, and a high n egative reward when the agent encounters an obstacl e. Additionally, using the DBSCAN clustering meth od, we determined approximate lengths and widths o f trees, and based on this information, we set an addi tional reward for the opposite trees of each collected tree. Based on the dimensions from clustering and t he agent's speed information, we also set a time cons traint, granting additional rewards only if the agent c ompletes the task within

the set time, thereby motivating the agent to complet e the task of fully covering the tree path in the shorte st time.

3. Results and Discussion

As illustrated in Figure 2, this paper describes the input process, training process, and inference proce ss using a deep reinforcement learning system. Duri ng the input stage, to enhance the model's generaliza tion ability, we trained the system by randomly selecting from five different maps. As observed in Figure 2, the model progressively explored the largest map during the training process, and the reward changes depicted in Figure 3 indicate that the model was gradually converging.

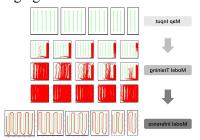


Figure 2. Model training process and inference results

That is, it could stably achieve full coverage for e ach map. After the training was completed, we valid ated the model using the original five maps and an a dditional new, larger map. The validation results, as shown in Figure 2, demonstrate that the model is cap able of generating the shortest path that fully covers the trees on all maps.

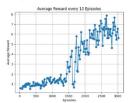


Figure 3. Average reward per 10 episodes of episodes during training

Conclusions

We propose an end-to-end method for generating the shortest comprehensive tree coverage paths base d on map elevation and tree position information, sp ecifically tailored to address the challenge of automa ting global shortest tree coverage path generation in orchard environments. This method enhances adapta bility to orchard maps of varying sizes through the u se of multiscale maps and boosts model performance by introducing a novel reward mechanism. Specific ally, we optimize the reward function using the DBS CAN clustering method, enabling the agent to effici ently explore and determine the shortest comprehens ive coverage paths. This approach, based on deep rei nforcement learning, has been validated through sim ulation to accurately generate global shortest tree co verage paths.

Acknowledgements

This work was supported by Korea Institute of Pl anning and Evaluation for Technology in Food, Agriculture and Forestry(IPET) through the Eco-friendly Power Source Application Agricultural Machinery Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs(MAFR A)(32204303) and through the Advanced Agricultural Machinery Industrialization Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs(MAFRA)(12102902).

References

- [1].Talaviya T, Shah D, Patel N, et al. Implement ation of artificial intelligence in agriculture for optim isation of irrigation and application of pesticides and herbicides[J]. Artificial Intelligence in Agriculture, 2020, 4: 58-73.
- [2]. Khan N, Medlock G, Graves S, et al. GPS gu ided autonomous navigation of a small agricultural r obot with automated

fertilizing system[R]. SAE Technical Paper, 201 8.