THE 6TH CIGR INTERNATIONAL CONFERENCE 2024

ICC JEJU, KOREA

PROGRAM BOOK

DIGITAL AGRICULTURE

Day 3, May 22 (Wed.) | Scientific Program

Technical Section 7: Information Technology S7-12

10:15 - 11:45

Halla B (3F)

Chair(s): CHAN-SEOK RYU (Gyeongsang National University)

S7-12-01

Detection of grapes and cutting point for a grape harvesting robot in smart vineyard by using only depth data

10:15 - 10:30

Author

SHOUTA SASAYA (KITAMI INSTITUTE OF TECHNOLOGY)

Co-author(s)

LIANGLIANG YANG (Kitami Institute of Technology) YOHEI HOSHINO (Kitami Institute of Technology) TOMOKI NOGUCHI (Kitami Institute of Technology)

YUKI FUJII (Kitami Institute of Technology)

TOMOYA SEGAWA (Kitami Institute of Technology)

S7-12-02

A pneumatic soft gripper with enveloping structure for spherical fruit grasping

10:30 - 10:45

QINGYU WANG (Zhejiang University) Author

Corresp. Author

QINGYU WANG (Zhejiang University)

Co-author(s)

MINGCHUAN ZHOU (Zhejiang University)

YIBIN YING (Zhejiang University)

YIBIN YING (Zhejiang University)

\$7-12-03

10:45 - 11:00

VTMF-net: a visual tactile multimodal fusion network for grasping slip detection

Corresp. Author

Author

QINGYU WANG (Zhejiang University) QINGYU WANG (Zhejiang University)

YIBIN YING (Zhejiang University)

Co-author(s)

MINGCHUAN ZHOU (Zhejiang University)

YIBIN YING (Zhejiang University)

S7-12-04

Plant trait analysis on reconstructed 3D model using RGB-D sensing techniques

11:00 - 11:15

XIANGHUI XIN (Seoul National University) Author GHISEOK KIM (Seoul National University) Corresp. Author

Co-author(s)

EUNGCHAN KIM (Seoul National University) SUNGJAY KIM (Seoul National University)

MIN-GYU BAEK (Seoul National University) SEUNG-WOO ROH (Seoul National University) DAEYOUNG KIM (Seoul National University) GHISEOK KIM (Seoul National University)

S7-12-05

Real-time dense reconstruction of greenhouse crops based on Graph-optimized SLAM algorithm

11:15 - 11:30

YU ZHENG (Chonnam national University) Author

Co-author(s)

ÖMER FARUK INCE (Agricultural Automation Research Center, Chonnam

National University)

KYEONG-HWAN LEE (Chonnam national University)

S7-12-06

Oriental melon pose estimation using weakly supervised region proposal for harvesting robot

11:30 - 11:45

SEUNGWOO KANG (Department of Biosystems Machinery Engineering, Author

Chungnam National University)

Co-author(s)

SOOHYUN CHO (Department of Biosystems Machinery Engineering,

Chungnam National University)

BAEK GYEOM SEONG (Department of Biosystems Machinery Engineering.

Chungnam National University)

TAE-SIN LEE (Department of Biosystems Machinery Engineering, Chungnam

National University)

DAEHYUN LEE (Department of Agricultural Machinery Engineering,

Chungnam National University)

Real-Time Dense Reconstruction of Greenhouse Crops Based on Graph-Optimized SLAM Algorithm

Yu Zheng 1,3, Ömer Faruk İnce 2*, Kyeong-Hwan Lee 1,2,3*

Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
Agricultural Automation Research Center, Chonnam National University, Gwangju, Republic of Korea
BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
* Corresponding author: email (khlee@jnu.ac.kr)

Abstract

Greenhouse agricultural technology, currently on the cusp of a digitization revolution, faces significant challenges due to the complex spatial configurations in modern greenhouses. Our study introduces a real-time 3D reconstruction system for greenhouse crops using Simultaneous Localization and Mapping (SLAM) technology, a significant advancement in agricultural monitoring. Utilizing RGBD cameras, our system captures intricate 3D point cloud frames in real-time. These frames undergo feature extraction for pose estimation, crucial for accurate 3D modeling. The system's efficiency is amplified by retaining only keyframes in memory, forming an optimized pose-graph, thus conservatively utilizing computational resources. The model's architecture incorporates backend loop closure detection, reinforced with marker constraints for enhanced accuracy. This is followed by a global optimization process, ensuring the model's high fidelity. The integration of the optimized pose graph with keyframes results in a detailed 3D point cloud model of the greenhouse environment, offering accuracy in spatial representation.

The coefficient of determination (R²) of 0.996, the minimum root mean square error (RMSE) of 6.26 millimeters for ground control points, and the RMSE of 2.1 centimeters for the absolute pose error (APE) of camera trajectories demonstrate the reliability and precision of the model's accuracy. In summary, this study introduces a sophisticated and efficient approach for 3D reconstruction of greenhouse crops, significant for advancing high-throughput phenotypic analysis and digital agriculture. This methodology not only enhances spatial understanding of greenhouse environments but also sets a new standard in agricultural technology innovation.

Keywords: SLAM, RGBD, Pose Estimation, Real-time Reconstruction

References:

[1] Aulbur, W. (2019). Agriculture 4.0 - Digitalization as an opportunity. Roland Berger.

Macario Barros, A., Michel, M., Moline, Y., Corre, G., and Carrel, F. (2022). A comprehensive survey of visual slam algorithms. Robotics, 11(1).

- [2] Chen, M., Tang, Y., Zou, X., Huang, Z., Zhou, H., and Chen, S. (2021). 3d global mapping of large-scale unstructured orchard integrating eye-in-hand stereo vision and slam. Computers and Electronics in Agriculture, 187:106237.
- [3] Halmetschlager-Funek, G., Suchi, M., Kampel, M., and Vincze, M. (2019). An empirical evaluation of ten depth cameras: Bias, precision, lateral noise, different lighting conditions and materials, and multiple sensor setups in indoor environments. IEEE Robotics Automation Magazine, 26(1):67–77.
- [4] Neupane, C., Koirala, A., Wang, Z., and Walsh, K. B. (2021). Evaluation of depth cameras for use in fruit localization and sizing: Finding a successor to kinect v2. Agronomy, 11(9).
- [5] Gen e-Mola, J., Gregorio, E., Auat Cheein, F., Guevara, J., Llorens, J., Sanz-Cortiella, R., Escol A., and Rosell-Polo, J. R. (2020). Fruit detection, yield prediction and canopy geometric characterization using lidar with forced air flow. Computers and Electronics in Agriculture, 168:105121.
- [6] Teng, P., Zhang, Y., Yamane, T., Kogoshi, M., Yoshida, T., Ota, T., and Nakagawa, J. (2023). Accuracy evaluation and branch detection method of 3d modeling using backpack 3d lidar slam and uav-sfm for peach trees during the pruning period in winter. Remote Sensing, 15(2)

Acknowledgments

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry(IPET) and Korea Smart Farm R&D Foundation(KosFarm) through Smart Farm Innovation Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs(MAFRA) and Ministry of Science and ICT(MSIT), Rural Development Administration(RDA)(42104404) and through the Open Field Smart Agriculture Technology Short-term Advancement Program, funded by Ministry of Agriculture, Food and Rural Affairs(MAFRA)(32204003).

Figures:

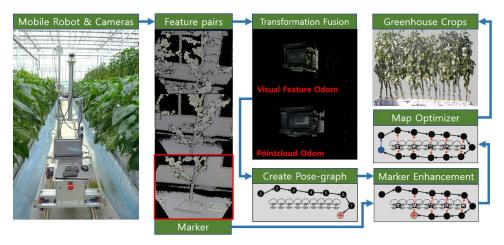


Figure 1: Algorithm Flow Schematic.

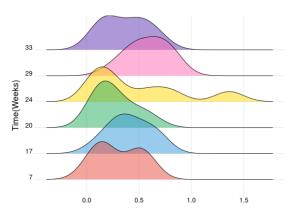


Figure 2: Error density distribution map (KDE).

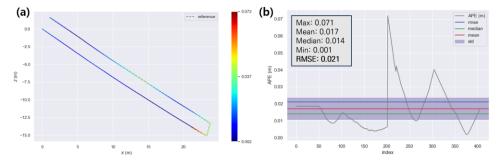


Figure 3: Trajectory accuracy, (a) Trajectory with error mapping, (b) APE error in reconstructed trajectory.