THE 6TH CIGR INTERNATIONAL CONFERENCE 2024

ICC JEJU, KOREA

PROGRAM BOOK

DIGITAL AGRICULTURE

Day 1, May 20 (Mon.) | Scientific Program

S6-3 Technical Section 6: Bioprocesses

16:30 - 18:00

303 (3F)

Chair(s): SEUNG HYUN LEE (Chungnam National University)

S6-3-01

Establishment of CRISPR-Cas-based antiparasitic agents for the swimming crab parasite Mesanophrys sp.

16:30-16:45

Author

XIAOPENG WANG (Ningbo University)

\$6-3-02

A novel hybrid nanocarrier with dual Stimuli-Responsiveness for enhanced delivery of prochloraz in agriculture

16:45-17:00 Author

MAHESH BHAT PADMALAYA (Chonnam national University)

KYEONG-HWAN LEE (Department of Convergence Biosystems Engineering, Chonnam National University)

Co-author(s)

Corresp. Author

JAE HO LEE (Agricultural Automation Research Centre, Chonnam National

University)

VINAYAK HEGDE (Department of Convergence Biosystems Engineering,

Chonnam National University)

KYEONG-HWAN LEE (Agricultural Automation Research Centre, Chonnam

National University)

S6-3-03 17:00-17:15 Identification of microbial career promoting anaerobic long-chain fatty acids

degradation

Author

RIKU SAKURAI (Tohoku University)

Corresp. Author

CHIKA TADA (Tohoku University)

Co-author(s)

YOSHIMI YOKOYAMA (Tohoku university)
YASUHIRO FUKUDA (Tohoku university)

CHIKA TADA (Tohoku university)

MASAKI KAWAKAMI (Asahi Kasei Home Products corporation)
SATOSHI HASHIMOTO (Asahi Kasei Home Products corporation)

S6-3-04

17:15-17:30

Metabolic engineering of pseudomonas putida for bioconversion of antarctic krill shell waste into medium-chain-length-polyhydroxyalkanoates

Author

YUEYUE ZHOU (School of Marine Sciences, Ningbo University)

Corresp. Author

YUEYUE ZHOU (School of Marine Sciences, Ningbo University)

S6-3-05

Copper-Iron based bimetallic MOF decorated natural diatoms for the delivery of thiabendazole

17:30-17:45

Author VINAYAK HEGDE (Chonnam national University)

Corresp. Author KYEONG-HWAN LEE (Chonnam national University)
MAHESH P. BHAT (Chonnam national University)

Co-author(s)

MAHESH BHAT PADMALAYA (Chonnam national University)

JAE HO LEE (Agricultural Automation Research Centre, Chonnam National

University)

KYEONG-HWAN LEE (Chonnam national University)

S6-3-06

Bacterial cellulose based edible scaffolds for cultivated meat application

Author

YUNAN TANG (Zhejiang University)

17:45-18:00 Corresp. Author

XIMING ZHANG (Zhejiang University)

Copper-Iron Based Bimetallic MOF Decorated Natural Diatoms for the Delivery of Thiabendazole

Vinayak Hegde¹, Mahesh P. Bhat^{2*}, Jae Ho Lee², and Kyeong-Hwan Lee^{1,2,3*}

Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
 Agricultural Automation Research Centre, Chonnam National University, Gwangju 61186, Republic of Korea
 BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea

* Corresponding author: email (khlee@jnu.ac.kr)

Abstract

Plant fungal diseases are a serious threat to agricultural productivity and plant health. To increase crop yield, it is essential to prevent or treat these diseases effectively. The conventional method of using active ingredients (AIs) has many drawbacks. Nanotechnology can offer a better alternative to delivering AIs, as it can overcome the limitations and improve the cost-efficiency, environmental impact, and efficacy of the AIs, while also fostering innovation and competition in the agricultural sector. This study examined the release efficiency of fungicide thiabendazole (Tbz), from a hybrid nanomaterial composed of low-cost natural diatoms and a bimetallic metal-organic framework (MOF) based on copper and iron (DE-MOF-Tbz). The study also evaluated the performance of a lauric acid-modified hybrid nanomaterial (DE-MOF-Tbz-LA) in releasing Tbz in-vitro under different pH and temperature conditions. The results showed that DE-MOF-Tbz released the highest amount of Tbz (about 45.8%) at pH 7, while DE-MOF-Tbz-LA released the maximum amount of Tbz (32.3%) at pH 5. Lauric acid, which is sensitive to temperature, acted as a gatekeeper, allowing a sustained release of about 97% over 10 days. In addition, in-vitro antifungal tests showed that the nanomaterials completely inhibited the growth of *B. cinerea*, a fungal pathogen, at a concentration of 1 μ g/mL. Moreover, in-vivo antifungal experiments using nanomaterials at a concentration of 200 μ g/mL showed complete suppression of fungal growth in cherry tomato fruits and leaves after 4 and 7 days of inoculation, respectively. These findings indicate that developed nanomaterials could be potential candidates for the controlled release of fungicides.

Keywords: Hybrid nanocarrier, Lauric acid, Fungal infections, Controlled release.

Acknowledgments

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry(IPET) through the Open Field Smart Agriculture Technology Short-term Advancement Program, funded by Ministry of Agriculture, Food and Rural Affairs(MAFRA)(32204003) and through the Eco-friendly Power Source Application Agricultural Machinery Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs(MAFRA)(32204303).

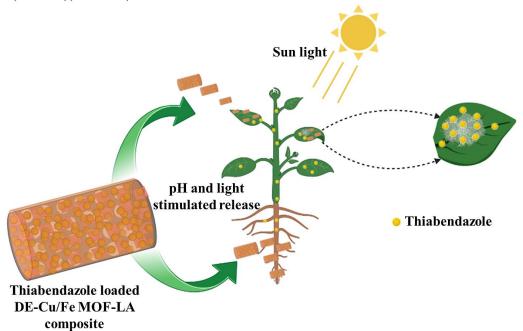


Figure 1. Schematic representation of thiabendazole release from bimetallic hybrid MOF nanocomposite for prevention of fungal disease in plant.